Microbial lipopeptides stimulate dendritic cell maturation via Toll-like receptor 2.

نویسندگان

  • C J Hertz
  • S M Kiertscher
  • P J Godowski
  • D A Bouis
  • M V Norgard
  • M D Roth
  • R L Modlin
چکیده

The ability of dendritic cells (DC) to initiate immune responses in naive T cells is dependent upon a maturation process that allows the cells to develop their potent Ag-presenting capacity. Although immature DC can be derived in vitro by treatment of peripheral blood monocytes with GM-CSF and IL-4, additional signals such as those provided by TNF-alpha, CD40 ligand, or LPS are required for complete maturation and maximum APC function. Because we recently found that microbial lipoproteins can activate monocytes and DC through Toll-like receptor (TLR) 2, we also investigated whether lipoproteins can drive DC maturation. Immature DC were cultured with or without lipoproteins and were monitored for expression of cell surface markers indicative of maturation. Stimulation with lipopeptides increased expression of CD83, MHC class II, CD80, CD86, CD54, and CD58, and decreased CD32 expression and endocytic activity; these lipopeptide-matured DC also displayed enhanced T cell stimulatory capacity in MLR, as measured by T cell proliferation and IFN-gamma secretion. The lipid moiety of the lipopeptide was found to be essential for induction of maturation. Preincubation of maturing DC with an anti-TLR2 blocking Ab before addition of lipopeptide blocked the phenotypic and functional changes associated with DC maturation. These results demonstrate that lipopeptides can stimulate DC maturation via TLR2, providing a mechanism by which products of bacteria can participate in the initiation of an immune response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating the Effects of Cytomegalovirus Glycoprotein B on the Maturation and Function of Monocyte-derived dendritic cells

Background & Objectives: Interaction of cytomegalovirus glycoprotein B with toll-like receptors of dendritic cells leads to early signaling and innate immune responses. The aim of this study is to evaluate the effects of cytomegalovirus glycoprotein B on the maturation and function of monocyte-derived dendritic cells in treated groups in comparison with control groups. Materials & Methods: Bloo...

متن کامل

Toll-like receptor 2 ligands as adjuvants for human Th1 responses.

Bacterial lipopeptides (bLPs) are increasingly used as adjuvants to activate cell-mediated immune responses to foreign Ags. To explore mechanisms whereby bLPs adjuvant T cell responses, we stimulated human PBMCs with bLPs. We found that bLPs stimulate T cells to proliferate and produce IFN-gamma in an accessory cell-dependent manner and in the absence of exogenous protein Ags. The ability of bL...

متن کامل

Ca2+ signaling through ryanodine receptor 1 enhances maturation and activation of human dendritic cells.

Increases in intracellular Ca2+ concentration accompany many physiological events, including maturation of dendritic cells, professional antigen-presenting cells characterized by their ability to migrate to secondary lymphoid organs where they initiate primary immune responses. The mechanism and molecules involved in the early steps of Ca2+ release in dendritic cells have not yet been defined. ...

متن کامل

The Efficacy of Toll-Like Receptors in Awakening Dendritic Cell/Natural Killer Cell System for Eradication of Tumors

Natural killer (NK) cells are effector cells of the innate immune system that exert direct cytotoxic functions. Ubiquitously-expressed toll-like receptors (TLRs) have been recognized as one of the major components promoting dendritic cell (DC) maturation, which may induce polarized immune responses beneficial to cancer immunotherapy. TLR-activated NK cells and DCs are prerequisite for robust ac...

متن کامل

TRAF6 is a critical factor for dendritic cell maturation and development.

IL-1 receptor (IL-1R)/Toll-like receptor (TLR) family and TNF receptor (TNFR) superfamily members are critical for regulating multiple aspects of dendritic cell (DC) biology. Several signaling pathways associated with each family utilize the adapter molecule, TRAF6, but its role in DCs is unclear. By examining TRAF6-deficient mice and bone marrow (BM) chimeras reconstituted with TRAF6-deficient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 166 4  شماره 

صفحات  -

تاریخ انتشار 2001